Интеллектуальные Информационные Системы Курсовая

Интеллектуальные Информационные Системы Курсовая.rar
Закачек 505
Средняя скорость 1970 Kb/s

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

НОО ВПО «Дальневосточный институт международных отношений»

Кафедра экономики и прикладной информатики

Специальность 080801.65 «Прикладная информатика (в экономике)»

по дисциплине: Информационные системы
по теме: Интеллектуальные информационные системы

Выполнил: студент 4 курса

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 25

ПРИЛОЖЕНИЕ А 27

ПРИЛОЖЕНИЕ Б 28

Современная экономика немыслима без информации. Тысячи предприятий, миллионы налогоплательщиков, триллионы рублей, биржевые котировки, реестры акционеров — все эти информационные потоки необходимо оценить, обработать, сделать необходимые выводы, принять правильное решение.

Современный специалист — экономист должен уметь принимать обоснованные решения. Для этого наряду с традиционными знаниями, такими как основы менеджмента, основы внешнеэкономической деятельности, банковское дело, административное управление, налогообложение он должен владеть информацией по построению информационных систем.

Интеллектуальные технологии – один из последних этапов развития аналитических технологий. Аналитическими технологиями называют методики, которые на основе каких-либо моделей, алгоритмов, математических теорем позволяют по известным данным оценить значения неизвестных характеристик и параметров. Простейший пример аналитической технологии — теорема Пифагора, которая позволяет по длинам сторон прямоугольного треугольника определить длину его третьей стороны. Другим примером являются способы, с помощью которых обрабатывает информацию человеческий мозг.

Аналитические технологии нужны в первую очередь людям, принимающим важные решения — руководителям, аналитикам, экспертам, консультантам. Доход компании в большой степени определяется качеством этих решений – точностью прогнозов, оптимальностью выбранных стратегий. Наиболее распространены аналитические технологии, используемые для решения следующих задач: для прогнозирования курсов валют, цен на сырье, спроса, дохода компании, уровня безработицы, числа страховых случаев, и т.д.

Как правило, для реальных задач бизнеса и производства не существует четких алгоритмов решения. Раньше руководители и эксперты решали такие задачи только на основе личного опыта. С помощью современных аналитических технологий строятся системы, позволяющие существенно повысить эффективность решений.

Искусственный интеллект является сейчас “горячей точкой” научных исследований. В этой точке, как в фокусе, сконцентрированы наибольшие усилия кибернетиков, лингвистов, психологов, философов, математиков и инженеров. Именно здесь решаются многие коренные вопросы, связанные с путями развития научной мысли, с воздействием достижений в области вычислительной техники и роботики на жизнь будущих поколений людей. Здесь возникают и получают права гражданства новые методы научных междисциплинарных исследований. Здесь формируется новый взгляд на роль тех или иных научных результатов и возникает то, что можно было бы назвать философским осмыслением этих результатов.

Цель курсовой работы заключается в исследовании понятия системы искусственного интеллекта, прогнозирования на основе нейронных сетей в финансах и бизнесе, рассмотрение примеров применения нейронных сетей на практике:

Создание группы экспертов;

Покупка готовой заказной системы;

Создание собственной системы «с нуля»;

Создание системы на основе готовых «нейропакетов»;

Использование нейросетей в различных областях бизнеса и технологий.

Задача состоит в анализе достоинств и недостатков каждой нейронной технологии в зависимости от параметров внедрения.

1 ПОНЯТИЕ «СИСТЕМА ИСКУССТВЕННОГО ИНТЕЛЛЕКТА»

Существует много различных подходов к классификации информационных систем:

– по степени структурированности решаемых задач;

– по автоматизируемым функциям;

– по степени автоматизации реализуемых функций;

– по сфере применения и характеру использования информации, в частности, по уровням управления.

Известно, что при обучении людей существуют различные уровни предметной обученности: воспроизведение (память); решение стандартных задач (умения, навыки); решение нестандартных, творческих задач (знания, активное интеллектуальное понимание).

Интеллект может проявляется в различных областях, но мы рассмотрим его возможности в решении задач, т.к. эта область проявления является типичной для интеллекта. Задачи бывают стандартные и нестандартные. Для стандартных задач известны алгоритмы решения. Для нестандартных они неизвестны. Поэтому решение нестандартной задачи представляет собой проблему.

Само понятие «стандартности» задачи относительно, относительна сама «неизвестность»: т.е. алгоритм может быть известен одним и неизвестен другим, или информация о нем может быть недоступной в определенный момент или период времени, и доступной – в другой. Поэтому для одних задача может быть стандартной, а для других нет. Нахождение или разработка алгоритма решения переводит задачу из разряда нестандартных в стандартные.

В математике и кибернетике задача считается решенной, если известен алгоритм ее решения.

Разработка алгоритма решения задачи связано с тонкими и сложными рассуждениями, требующими изобретательности, опыта, высокой квалификации.

Считается, что эта работа является творческой, существенно неформализуемой и требует участия человека с его «естественным» опытом и интеллектом. Здесь необходимо отметить, что существует технология решения изобретательских задач (ТРИЗ), в которой сделана попытка, по мнению многих специалистов, довольно успешная, позволяющая в какой-то степени формализовать процедуру решения творческих задач.

Интеллектуальными считаются задачи, связанные с разработкой алгоритмов решения ранее нерешенных задач определенного типа.

Отличительной особенностью и одним из основных источников эффективности алгоритмов является то, что они сводят решение сложной задачи к определенной последовательности достаточно простых или даже элементарных для решения задач. В результате нерешаемая задача становится решаемой. Исходная информация поступает на вход алгоритма, на каждом шаге она преобразуется и в таком виде передается на следующий шаг, в результате чего на выходе алгоритма получается информация, представляющая собой решение задачи. Алгоритм может быть исполнен такой системой, которая способна реализовать элементарные операции на различных шагах этого алгоритма.

Существует ряд задач, таких, как распознавание образов и идентификация, прогнозирование, принятие решений по управлению, для которых разбиение процесса поиска решения на отдельные элементарные шаги, а значит и разработка алгоритма, весьма затруднительны. Из этих рассуждений вытекает следующее определение интеллекта: интеллект представляет собой универсальный алгоритма, способный разрабатывать алгоритмы решения конкретных задач.

Исходя из вышесказанного, можно сделать вывод о том, что в нашем случае наиболее подходит классификацией ИС, основанная на критерии, позволяющем оценить «степень интеллектуальности ИС», т.е. на критерии «степени структурированности решаемых задач» (рисунок 1).

Рисунок 1. Классификация информационных систем по степени структурированности решаемых задач

1.1 Понятие и классификация систем искусственного интеллекта

Существуют следующие классы систем искусственного интеллекта:

Системы с интеллектуальной обратной связью и интеллектуальными интерфейсами.

Автоматизированные системы распознавания образов.

Автоматизированные системы поддержки принятия решений.

Экспертные системы (ЭС).

Генетические алгоритмы и моделирование эволюции.

Выявление знаний из опыта (эмпирических фактов) и интеллектуальный анализ данных (data mining).

Системы с интеллектуальной обратной связью и интеллектуальными интерфейсами:

Интеллектуальный интерфейс (Intelligent interface) — интерфейс непосредственного взаимодействия ресурсов информационного комплекса и пользователя посредством программ обработки текстовых запросов пользователя.

Примером может служить программа идентификация и аутентификация личности по почерку. Аутентификация – это проверка, действительно ли пользователь является тем, за кого себя выдает. При этом пользователь должен предварительно сообщить о себе идентификационную информацию: свое имя и пароль, соответствующий названному имени.

Идентификация – это установление его личности.

И идентификация, и аутентификация являются типичными задачами распознавания образов, которое может проводиться по заранее определенной или произвольной последовательности нажатий клавиш.

Системы с биологической обратной связью (БОС). Это системы, поведение которых зависит от психофизиологического (биологического) состояния пользователя:

Мониторинг состояния сотрудников на конвейере с целью

обеспечения высокого качества продукции.

Компьютерные тренажеры для обучения больных с функциональными нарушениями управлению своим состоянием.

Компьютерные игры с БОС.

Системы с семантическим резонансом. системы, поведение которых зависит от состояния сознания пользователя и его психологической реакции на смысловые стимулы.

Системы виртуальной реальности.

Виртуальная реальность (ВР) – модельная трехмерная (3D) окружающая среда, создаваемая компьютерными средствами и реалистично реагирующая на взаимодействие с пользователями.

Технической базой систем виртуальной реальности являются современные мощные персональные компьютеры и программное обеспечение высококачественной трехмерной визуализации и анимации. В качестве устройств ввода-вывода информации в системах ВР применяются виртуальные шлемы с дисплеями, в частности шлемы со стереоскопическими очками, и устройства 3D-ввода, например, мышь с пространственно управляемым курсором или «цифровые перчатки», которые обеспечивают тактильную обратную связь с пользователем.

Автоматизированные системы распознавания образов:

Система распознавания образов — это класс систем искусственного интеллекта, обеспечивающих:

– формирование конкретных образов объектов и обобщенных образов классов;

– обучение, т.е. формирование обобщенных образов классов на основе ряда примеров объектов, классифицированных (т.е. отнесенных к тем или иным категориям – классам) учителем и составляющих обучающую выборку;

– самообучение, т.е. формирование кластеров объектов на основе анализа неклассифицированной обучающей выборки;

– распознавание, т.е. идентификацию (и прогнозирование) состояний объектов, описанных признаками, друг с другом и с обобщенными образами классов;

– измерение степени адекватности модели;

решение обратной задачи идентификации и прогнозирования (обеспечивается не всеми моделями).

Автоматизированные системы поддержки принятия решений:

Системы поддержки принятия решений (СППР) – это компьютерные системы, почти всегда интерактивные, разработанные, чтобы помочь менеджеру (или руководителю) в принятии решений управления, объединяя данные, сложные аналитические модели и удобное для пользователя программное обеспечение в единую мощную систему, которая может поддерживать слабоструктурированное и неструктурированное принятие решения. СППР находиться под управлением пользователя от начала до реализации и используется ежедневно. Предназначена для автоматизации выбора рационального варианта из исходного множества альтернативных в условиях многокритериальности и неопределенности исходной информации.

Экспертная система (ЭС) – это программа, которая в определенных отношениях заменяет эксперта или группу экспертов в той или иной предметной области. ЭС предназначены для решения практических задач, возникающих в слабо структурированных и трудно формализуемых предметных областях.

Исторически, ЭС были первыми системами искусственного интеллекта, которые привлекли внимание потребителей. Экспертные системы используются в маркетинге для сегментации рынка и выработке маркетинговых программ, а также в банковском деле для определения тенденции рынка, трейдинг для программирования котировок акций и валют, в аудите для подготовки заключений о финансовом состоянии предприятий.

Генетические алгоритмы и моделирование эволюции:

Генетические Алгоритмы (ГА) – это адаптивные методы функциональной оптимизации, основанные на компьютерном имитационном моделировании биологической эволюции. Генетический алгоритм — новейший способ решения задач оптимизации в экономике (см. Приложение А).

Это способ анализа, обеспечивающий определение силы и направления влияния факторов на перевод объекта управления в целевое состояние с учетом сходства и различия в влиянии различных факторов на объект управления.

Основана на когнитивной структуризации предметной области, т.е. на выявление будущих целевых и нежелательных состояний объекта управления и наиболее существенных (базисных) факторов управления и внешней среды, влияющих на переход объекта в эти состояния, а также установление на качественном уровне причинно-следственных связей между ними, с учетом взаимовлияния факторов друг на друга.

Результаты когнитивной структуризации отображаются с помощью когнитивной карты (модели) (см. Приложение Б).

В экономической сфере это позволяет в сжатые сроки разработать и обосновать стратегию экономического развития предприятия, банка, региона или даже целого государства с учетом влияния изменений во внешней среде; в сфере финансов и фондового рынка – учесть ожидания участников рынка.

Выявление знаний из опыта (эмпирических фактов) и интеллектуальный анализ данных (data mining):

Интеллектуальный анализ данных (ИАД или data mining) – это процесс обнаружения в «сырых» данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности. Достижения технологии data mining активно используются в банковском деле для решения проблем Телекоммуникации, анализа биржевого рынка и др.

Искусственная нейронная сеть (ИНС, нейросеть) — это набор нейронов, соединенных между собой. Как правило, передаточные функции всех нейронов в сети фиксированы, а веса являются параметрами сети и могут изменяться. Некоторые входы нейронов помечены как внешние входы сети, а некоторые выходы — как внешние выходы сети. Подавая любые числа на входы сети, мы получаем какой-то набор чисел на выходах сети. Практически любую задачу можно свести к задаче, решаемой нейросетью.

Более подробно о ИНС и ее применении в экономике и финансах будет рассказано в следующей главе.

Интеллектуальные информационные системы.doc

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

НОО ВПО «Дальневосточный институт международных отношений»

Кафедра экономики и прикладной информатики

Специальность 080801.65 «Прикладная информатика (в экономике)»

по дисциплине: Информационные системы
по теме: Интеллектуальные информационные системы

Выполнил: студент 4 курса

Современная экономика немыслима без информации. Тысячи предприятий, миллионы налогоплательщиков, триллионы рублей, биржевые котировки, реестры акционеров — все эти информационные потоки необходимо оценить, обработать, сделать необходимые выводы, принять правильное решение.

Современный специалист — экономист должен уметь принимать обоснованные решения. Для этого наряду с традиционными знаниями, такими как основы менеджмента, основы внешнеэкономической деятельности, банковское дело, административное управление, налогообложение он должен владеть информацией по построению информационных систем.

Интеллектуальные технологии – один из последних этапов развития аналитических технологий. Аналитическими технологиями называют методики, которые на основе каких-либо моделей, алгоритмов, математических теорем позволяют по известным данным оценить значения неизвестных характеристик и параметров. Простейший пример аналитической технологии — теорема Пифагора, которая позволяет по длинам сторон прямоугольного треугольника определить длину его третьей стороны. Другим примером являются способы, с помощью которых обрабатывает информацию человеческий мозг.

Аналитические технологии нужны в первую очередь людям, принимающим важные решения — руководителям, аналитикам, экспертам, консультантам. Доход компании в большой степени определяется качеством этих решений – точностью прогнозов, оптимальностью выбранных стратегий. Наиболее распространены аналитические технологии, используемые для решения следующих задач: для прогнозирования курсов валют, цен на сырье, спроса, дохода компании, уровня безработицы, числа страховых случаев, и т.д.

Как правило, для реальных задач бизнеса и производства не существует четких алгоритмов решения. Раньше руководители и эксперты решали такие задачи только на основе личного опыта. С помощью современных аналитических технологий строятся системы, позволяющие существенно повысить эффективность решений.

Искусственный интеллект является сейчас “горячей точкой” научных исследований. В этой точке, как в фокусе, сконцентрированы наибольшие усилия кибернетиков, лингвистов, психологов, философов, математиков и инженеров. Именно здесь решаются многие коренные вопросы, связанные с путями развития научной мысли, с воздействием достижений в области вычислительной техники и роботики на жизнь будущих поколений людей. Здесь возникают и получают права гражданства новые методы научных междисциплинарных исследований. Здесь формируется новый взгляд на роль тех или иных научных результатов и возникает то, что можно было бы назвать философским осмыслением этих результатов.

Цель курсовой работы заключается в исследовании понятия системы искусственного интеллекта, прогнозирования на основе нейронных сетей в финансах и бизнесе, рассмотрение примеров применения нейронных сетей на практике:

  • Создание группы экспертов;
  • Покупка готовой заказной системы;
  • Создание собственной системы «с нуля»;
  • Создание системы на основе готовых «нейропакетов»;
  • Использование нейросетей в различных областях бизнеса и технологий.

Задача состоит в анализе достоинств и недостатков каждой нейронной технологии в зависимости от параметров внедрения.

1 ПОНЯТИЕ «СИСТЕМА ИСКУССТВЕННОГО ИНТЕЛЛЕКТА»

Существует много различных подходов к классификации информационных систем:

– по степени структурированности решаемых задач;

– по автоматизируемым функциям;

– по степени автоматизации реализуемых функций;

– по сфере применения и характеру использования информации, в частности, по уровням управления.

Известно, что при обучении людей существуют различные уровни предметной обученности: воспроизведение (память); решение стандартных задач (умения, навыки); решение нестандартных, творческих задач (знания, активное интеллектуальное понимание).

Интеллект может проявляется в различных областях, но мы рассмотрим его возможности в решении задач, т.к. эта область проявления является типичной для интеллекта. Задачи бывают стандартные и нестандартные. Для стандартных задач известны алгоритмы решения. Для нестандартных они неизвестны. Поэтому решение нестандартной задачи представляет собой проблему.

Само понятие «стандартности» задачи относительно, относительна сама «неизвестность»: т.е. алгоритм может быть известен одним и неизвестен другим, или информация о нем может быть недоступной в определенный момент или период времени, и доступной – в другой. Поэтому для одних задача может быть стандартной, а для других нет. Нахождение или разработка алгоритма решения переводит задачу из разряда нестандартных в стандартные.

В математике и кибернетике задача считается решенной, если известен алгоритм ее решения.

Разработка алгоритма решения задачи связано с тонкими и сложными рассуждениями, требующими изобретательности, опыта, высокой квалификации.

Считается, что эта работа является творческой, существенно неформализуемой и требует участия человека с его «естественным» опытом и интеллектом. Здесь необходимо отметить, что существует технология решения изобретательских задач (ТРИЗ), в которой сделана попытка, по мнению многих специалистов, довольно успешная, позволяющая в какой-то степени формализовать процедуру решения творческих задач.

Интеллектуальными считаются задачи, связанные с разработкой алгори тмов решения ранее нерешенных задач определенного типа.

Отличительной особенностью и одним из основных источников эффективности алгоритмов является то, что они сводят решение сложной задачи к определенной последовательности достаточно простых или даже элементарных для решения задач. В результате нерешаемая задача становится решаемой. Исходная информация поступает на вход алгоритма, на каждом шаге она преобразуется и в таком виде передается на следующий шаг, в результате чего на выходе алгоритма получается информация, представляющая собой решение задачи. Алгоритм может быть исполнен такой системой, которая способна реализовать элементарные операции на различных шагах этого алгоритма.

Существует ряд задач, таких, как распознавание образов и идентификация, прогнозирование, принятие решений по управлению, для которых разбиение процесса поиска решения на отдельные элементарные шаги, а значит и разработка алгоритма, весьма затруднительны. Из этих рассуждений вытекает следующее определение интеллекта: интеллект представляет собой универсальный алгоритма, способный разрабатывать алгоритмы решения конкретных задач.

Исходя из вышесказанного, можно сделать вывод о том, что в нашем случае наиболее подходит классификацией ИС, основанная на критерии, позволяющем оценить «степень интеллектуальности ИС», т.е. на критерии «степени структурированности решаемых задач» (рисунок 1).

Рисунок 1. Классификация информационных систем по степени структурированности решаемых задач

1.1 Понятие и классификация систем искусственного интеллекта

Существуют следующие классы систем искусственного интеллекта:

    1. Системы с интеллектуальной обратной связью и интеллектуальными интерфейсами.
    2. Автоматизированные системы распознавания образов.
    3. Автоматизированные системы поддержки принятия решений.
    4. Экспертные системы (ЭС).
    5. Генетические алгоритмы и моделирование эволюции.
    6. Когнитивное моделирование.
    7. Выявление знаний из опыта (эмпирических фактов) и интеллектуальный анализ данных (data mining).
    8. Нейронные сети.

Системы с интеллектуальной обратной связью и интеллектуальными интерфейса ми:

Интеллектуальный интерфейс (Intelligent interface) — интерфейс непосредственного взаимодействия ресурсов информационного комплекса и пользователя посредством программ обработки текстовых запросов пользователя.

Примером может служить программа идентификация и аутентификация личности по почерку. Аутентификация – это проверка, действительно ли пользователь является тем, за кого себя выдает. При этом пользователь должен предварительно сообщить о себе идентификационную информацию: свое имя и пароль, соответствующий названному имени.

Идентификация – это установление его личности.

И идентификация, и аутентификация являются типичными задачами распознавания образов, которое может проводиться по заранее определенной или произвольной последовательности нажатий клавиш.

Системы с биологической обратной связью (БОС). Это системы, поведение которых зависит от психофизиологического (биологического) состояния пользователя:

Мониторинг состояния сотрудников на конвейере с целью

обеспечения высокого качества продукции.

Компьютерные тренажеры для обучения больных с функциональными нарушениями управлению своим состоянием.

Компьютерные игры с БОС.

Системы с семантическим резонансом. системы, поведение которых зависит от состояния сознания пользователя и его психологической реакции на смысловые стимулы.

Системы виртуальной реальности.

Виртуальная реальность (ВР) – модельная трехмерная (3D) окружающая среда, создаваемая компьютерными средствами и реалистично реагирующая на взаимодействие с пользователями.

Технической базой систем виртуальной реальности являются современные мощные персональные компьютеры и программное обеспечение высококачественной трехмерной визуализации и анимации. В качестве устройств ввода-вывода информации в системах ВР применяются виртуальные шлемы с дисплеями, в частности шлемы со стереоскопическими очками, и устройства 3D-ввода, например, мышь с пространственно управляемым курсором или «цифровые перчатки», которые обеспечивают тактильную обратную связь с пользователем.

Автоматизированные системы распознавания образов:

Система распознавания образов — это класс систем искусственного интеллекта, обеспечивающих:

– формирование конкретных образов объектов и обобщенных образов классов;

– обучение, т.е. формирование обобщенных образов классов на основе ряда примеров объектов, классифицированных (т.е. отнесенных к тем или иным категориям – классам) учителем и составляющих обучающую выборку;

– самообучение, т.е. формирование кластеров объектов на основе анализа неклассифицированной обучающей выборки;

– распознавание, т.е. идентификацию (и прогнозирование) состояний объектов, описанных признаками, друг с другом и с обобщенными образами классов;

– измерение степени адекватности модели;

решение обратной задачи идентификации и прогнозирования (обеспечивается не всеми моделями).

Автоматизированные системы поддержки принятия решений:

Системы поддержки принятия решений (СППР) – это компьютерные системы, почти всегда интерактивные, разработанные, чтобы помочь менеджеру (или руководителю) в принятии решений управления, объединяя данные, сложные аналитические модели и удобное для пользователя программное обеспечение в единую мощную систему, которая может поддерживать слабоструктурированное и неструктурированное принятие решения. СППР находиться под управлением пользователя от начала до реализации и используется ежедневно. Предназначена для автоматизации выбора рационального варианта из исходного множества альтернативных в условиях многокритериальности и неопределенности исходной информации.

Экспертная система (ЭС) – это программа, которая в определенных отношениях заменяет эксперта или группу экспертов в той или иной предметной области. ЭС предназначены для решения практических задач, возникающих в слабо структурированных и трудно формализуемых предметных областях.

Исторически, ЭС были первыми системами искусственного интеллекта, которые привлекли внимание потребителей. Экспертные системы используются в маркетинге для сегментации рынка и выработке маркетинговых программ, а также в банковском деле для определения тенденции рынка, трейдинг для программирования котировок акций и валют, в аудите для подготовки заключений о финансовом состоянии предприятий.

Генетические алгоритмы и моделирование эволюции:

Генетические Алгоритмы (ГА) – это адаптивные методы функциональной оптимизации, основанные на компьютерном имитационном моделировании биологической эволюции. Генетический алгоритм — новейший способ решения задач оптимизации в экономике (см. Приложение А).

Это способ анализа, обеспечивающий определение силы и направления влияния факторов на перевод объекта управления в целевое состояние с учетом сходства и различия в влиянии различных факторов на объект управления.

Основана на когнитивной структуризации предметной области, т.е. на выявление будущих целевых и нежелательных состояний объекта управления и наиболее существенных (базисных) факторов управления и внешней среды, влияющих на переход объекта в эти состояния, а также установление на качественном уровне причинно-следственных связей между ними, с учетом взаимовлияния факторов друг на друга.


Статьи по теме