Модель Множественной Регрессии Реферат

Модель Множественной Регрессии Реферат.rar
Закачек 1222
Средняя скорость 7013 Kb/s

Линейная модель множественной регрессии……………………. 5

Классический метод наименьших квадратов для модели множественной регрессии…………………………………………..6

Обобщенная линейная модель множественной регрессии……………. 8

Список использованной литературы…………………………………….10

Временной ряд — это совокупность значений какого-либо показателя за несколько последовательных моментов (периодов) времени. Каждый уровень временного ряда формируется под воздействием большой числа факторов, которые условно можно подразделить на три группы:

— факторы, формирующую тенденцию ряда;

— факторы, формирующие циклические колебания ряда;

При различных сочетаниях этих факторов зависимость уров­ней рада от времени может принимать разные формы.

Большинство временных рядов экономических показателей имеют тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. По всей видимости, эти факторы, взятые в отдельности, могут оказывать разнонаправленное воздействие на исследуемый показатель. Однако в совокупности они форми­руют его возрастающую или убывающую тенденцию.

Также изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезон­ный характер., поскольку экономическая деятельность ряда от­раслей зависит от времени года (например, цены на сельскохо­зяйственную продукцию в летний период выше, чем в зимний; уровень безработицы в курортных городах в зимний период выше по сравнению с летним). При наличии больших массивов данных за длительные промежутки времени можно выявить циклические колебания, связанные с общей динамикой конъюнктуры рынка, а также с фазой бизнес-цикла, в которой находится экономика страны.

Некоторые временные ряды не содержат тенденции и цикли­ческую компоненту, а каждый следующий их уровень образуется как сумма среднего уровня рада и некоторой (положительной или отрицательной) случайной компоненты.

Очевидно, что реальные данные не соответствуют полностью ни одной из описанных выше моделей. Чаще всего они содержат все три компоненты. Каждый их уровень формируется под воз­действием тенденции, сезонных колебаний и случайной компо­ненты.

В большинстве случаев фактический уровень временного ря­да можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой времен­ной ряд представлен как сумма перечисленных компонент, назы­вается аддитивной моделью временного ряда. Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда.

1.1. Линейная модель множественной регрессии

Парная регрессия может дать хороший результат при моделирова­нии, если влиянием других факторов, воздействующих на объект исследо­вания, можно пренебречь. Если же этим влиянием пренебречь нельзя, то в этом случае следует попытаться выявить влияние других факторов, вводя их в модель, т.е, построить уравнение множественной регрессии.

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и целом ряде других вопросов экономет­рики. В настоящее время множественная регрессия — один из наиболее распространенных методов в эконометрике.

Основная цель множественной регрессии — построить модель с боль­шим числом факторов, определив при этом влияние каждого из них в отдель­ности, а также совокупное их воздействие на моделируемый показатель.

Общий вид линейной модели множественной регрессии:

где n — объём выборки, который по крайней мере в 3 раза превосходит m -количество независимых переменных;

уi — значение результативной пере­менной в наблюдении I;

хi1i2, . хim-значения независимых перемен­ных в наблюдении i;

β0, β1, … βm -параметры уравнения регрессии, под­лежащие оценке;

ε — значение случайной ошибки модели множественной регрессии в наблюдении I,

При построении модели множественной линейной регрессии учиты­ваются следующие пять условий:

1. величины хi1i2, . хim — неслучайные и независимые переменные;

2. математическое ожидание случайной ошибки уравнения регрессии
равно нулю во всех наблюдениях: М (ε) = 0, i= 1,m;

3. дисперсия случайной ошибки уравнения регрессии является постоянной для всех наблюдений: D(ε) = σ 2 = const;

4. случайные ошибки модели регрессии не коррелируют между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю): соv(εij.) = 0, i≠j;

5. случайная ошибка модели регрессии — случайная величина, подчиняющаяся нормальному закону распределения с нулевым математическим ожиданием и дисперсией σ 2 .

Матричный вид линейной модели множественной регрессии[3]:

где: — вектор значений результативной переменной размерности n×1

матрица значений независимых переменных размерности n× (m + 1). Первый столбец этой матрицы является единичным, так как в модели регрессии коэффициент β0, умножается на единицу;

— вектор значений результативной переменной размерности (m+1)×1

— вектор случайных ошибок размерности n×1

1.2. Классический метод наименьших квадратов для модели множественной регрессии

Неизвестные коэффициенты линейной модели множественной рег­рессии β0, β1, … βm оцениваются с помощью классического метода наи­меньших квадратов, основная идея которого заключается в определении такого вектора оценки Д, который минимизировал бы сумму квадратов отклонений наблюдаемых значений результативной переменной у от мо­дельных значений (т. е. рассчитанных на основании построенной моде­ли регрессии).

Как известно из курса математического анализа, для того чтобы най­ти экстремум функции нескольких переменных, надо вычислить частные производные первого порядка по каждому из параметров и приравнять их к нулю.

Обозначив bi с соответствующими индексами оценки коэффициентов модели βi, i=0,m, имеет функцию m+1 аргумента.

После элементарных преобразований приходим к системе линейных нормальных уравнений для нахождения оценок параметров линейного уравнения множественной регрессии .

Полученная система нормальных уравнений является квадратной, т. е. количество уравнений равняется количеству неизвестных переменных, поэтому решение системы можно найти с помощью метода Крамера или метода Гаусса,

Решением системы нормальных уравнений в матричной форме будет вектор оценок.

На основе линейного уравнения множественной регрессии могут быть найдены частные уравнения регрессии, т. е. уравнения регрессии, которые связывают результативный признак с соответствующим фактором хi при закреплении остальных факторов на среднем уровне.

При подстановке в эти уравнения средних значений соответствую­щих факторов они принимают вид парных уравнений линейной регрессии.

В отличие от парной регрессии, частные уравнения регрессии харак­теризуют изолированное влияние фактора на результат, ибо другие факто­ры закреплены на неизменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии. Это позволяет на основе частных уравнений регрессии определять частные коэффициенты эластичности:

где bi — коэффициент регрессии для фактора xi; в уравнении множествен­ной регрессии,

ух1 хm — частное уравнение регрессии.

Наряду с частными коэффициентами эластичности могут быть най­дены средние по совокупности показатели эластичности. которые показывают, на сколько процентов в среднем изменится результат при изменении соответствующего фактора на 1%. Средние показатели эластичности можно сравнивать друг с другом и соответственно ранжировать факторы по силе из воздействия на результат.

Обобщенная линейная модель множественной регрессии

Коренное отличие обобщенной модели от классической состоит только в виде ковариационной квадратной матрицы вектора возмущений: вместо матрицы Σε = σ 2 En для классической модели имеем матрицу Σε = Ω для обобщенной. Последняя имеет произвольные значения ковариаций и дисперсий. Например, ковариационные матрицы классической и обобщенной моделей для двух наблюдений (п=2) в общем случае будут иметь вид:

Формально обобщенная линейная модель множественной регрессии (ОЛММР) в матричной форме имеет вид:

и описывается системой условий:

ε – случайный вектор возмущений с размерностью n; X -неслучайная матрица значений объясняющих переменных (матрица плана) с размерностью nх(р+1); напомним, что 1-й столбец этой матрицы состоит из пединиц;

M(ε) = 0n – математическое ожидание вектора возмущений равно ноль-вектору;

Σε = M(εε’) = Ω, где Ω – положительно определенная квадратная матрица; заметим, что произведение векторов ε‘ε дает скаляр, а произведение векторов εε’ дает матрицу размерностью nxn;

Ранг матрицы X равен р+1, который меньше n; напомним, что р+1 — число объясняющих переменных в модели (вместе с фиктивной переменной), n — число наблюдений за результирующей и объясняющими переменными.

Следствие 1. Оценка параметров модели (1) обычным МНК

является несмещенной и состоятельной, но неэффективной (неоптимальной в смысле теоремы Гаусса-Маркова). Для получения эффективной оценки нужно использовать обобщенный метод наименьших квадратов.

Следствие 2. Для классической модели ковариационная матрица вектора оценок параметров определялась формулой:

Эта оценка для обобщенной модели является смещенной (следовательно, и неэффективной).

Следствие 3. Для обобщенной модели ковариационная матрица вектора оценок параметров определяется другой формулой:

Список использованной литературы

Эконометрика: Учебник для вузов / Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2001.

Эконометрика: Учебное пособие / Автор Ю.Я. Настин, 2004.

1.1. Линейная модель множественной регрессии……………………. 5

1.2. Классический метод наименьших квадратов для модели множественной регрессии…………………………………………..6

2. Обобщенная линейная модель множественной регрессии……………. 8

3. Список использованной литературы…………………………………….10

Временной ряд — это совокупность значений какого-либо показателя за несколько последовательных моментов (периодов) времени. Каждый уровень временного ряда формируется под воздействием большой числа факторов, которые условно можно подразделить на три группы:

— факторы, формирующую тенденцию ряда;

— факторы, формирующие циклические колебания ряда;

При различных сочетаниях этих факторов зависимость уров­ней рада от времени может принимать разные формы.

Большинство временных рядов экономических показателей имеют тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. По всей видимости, эти факторы, взятые в отдельности, могут оказывать разнонаправленное воздействие на исследуемый показатель. Однако в совокупности они форми­руют его возрастающую или убывающую тенденцию.

Также изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезон­ный характер., поскольку экономическая деятельность ряда от­раслей зависит от времени года (например, цены на сельскохо­зяйственную продукцию в летний период выше, чем в зимний; уровень безработицы в курортных городах в зимний период выше по сравнению с летним). При наличии больших массивов данных за длительные промежутки времени можно выявить циклические колебания, связанные с общей динамикой конъюнктуры рынка, а также с фазой бизнес-цикла, в которой находится экономика страны.

Некоторые временные ряды не содержат тенденции и цикли­ческую компоненту, а каждый следующий их уровень образуется как сумма среднего уровня рада и некоторой (положительной или отрицательной) случайной компоненты.

Очевидно, что реальные данные не соответствуют полностью ни одной из описанных выше моделей. Чаще всего они содержат все три компоненты. Каждый их уровень формируется под воз­действием тенденции, сезонных колебаний и случайной компо­ненты.

В большинстве случаев фактический уровень временного ря­да можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой времен­ной ряд представлен как сумма перечисленных компонент, назы­вается аддитивной моделью временного ряда. Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда.

1.1. Линейная модель множественной регрессии

Парная регрессия может дать хороший результат при моделирова­нии, если влиянием других факторов, воздействующих на объект исследо­вания, можно пренебречь. Если же этим влиянием пренебречь нельзя, то в этом случае следует попытаться выявить влияние других факторов, вводя их в модель, т.е, построить уравнение множественной регрессии.

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и целом ряде других вопросов экономет­рики. В настоящее время множественная регрессия — один из наиболее распространенных методов в эконометрике.

Основная цель множественной регрессии — построить модель с боль­шим числом факторов, определив при этом влияние каждого из них в отдель­ности, а также совокупное их воздействие на моделируемый показатель.

Общий вид линейной модели множественной регрессии:

где n — объём выборки, который по крайней мере в 3 раза превосходит m -количество независимых переменных;

уi — значение результативной пере­менной в наблюдении I;

хi1i2 , . хim -значения независимых перемен­ных в наблюдении i;

β0 , β1 , … βm -параметры уравнения регрессии, под­лежащие оценке;

ε — значение случайной ошибки модели множественной регрессии в наблюдении I,

При построении модели множественной линейной регрессии учиты­ваются следующие пять условий:

1. величины хi1i2 , . хim — неслучайные и независимые переменные;

2. математическое ожидание случайной ошибки уравнения регрессии
равно нулю во всех наблюдениях: М (ε) = 0, i= 1,m;

3. дисперсия случайной ошибки уравнения регрессии является постоянной для всех наблюдений: D(ε) = σ 2 = const;

4. случайные ошибки модели регрессии не коррелируют между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю): соv(εij .) = 0, i≠j;

5. случайная ошибка модели регрессии — случайная величина, подчиняющаяся нормальному закону распределения с нулевым математическим ожиданием и дисперсией σ 2 .

Матричный вид линейной модели множественной регрессии[3]:

где: — вектор значений результативной переменной размерности n×1

матрица значений независимых переменных размерности n× (m + 1). Первый столбец этой матрицы является единичным, так как в модели регрессии коэффициент β0 , умножается на единицу;

— вектор значений результативной переменной размерности (m+1)×1

— вектор случайных ошибок размерности n×1

Неизвестные коэффициенты линейной модели множественной рег­рессии β0 , β1 , … βm оцениваются с помощью классического метода наи­меньших квадратов, основная идея которого заключается в определении такого вектора оценки Д, который минимизировал бы сумму квадратов отклонений наблюдаемых значений результативной переменной у от мо­дельных значений (т. е. рассчитанных на основании построенной моде­ли регрессии).

Как известно из курса математического анализа, для того чтобы най­ти экстремум функции нескольких переменных, надо вычислить частные производные первого порядка по каждому из параметров и приравнять их к нулю.

Обозначив bi с соответствующими индексами оценки коэффициентов модели βi , i=0,m, имеет функцию m+1 аргумента.

После элементарных преобразований приходим к системе линейных нормальных уравнений для нахождения оценок параметров линейного уравнения множественной регрессии .

Полученная система нормальных уравнений является квадратной, т. е. количество уравнений равняется количеству неизвестных переменных, поэтому решение системы можно найти с помощью метода Крамера или метода Гаусса,

Решением системы нормальных уравнений в матричной форме будет вектор оценок.

На основе линейного уравнения множественной регрессии могут быть найдены частные уравнения регрессии, т. е. уравнения регрессии, которые связывают результативный признак с соответствующим фактором хi при закреплении остальных факторов на среднем уровне.

При подстановке в эти уравнения средних значений соответствую­щих факторов они принимают вид парных уравнений линейной регрессии.

В отличие от парной регрессии, частные уравнения регрессии харак­теризуют изолированное влияние фактора на результат, ибо другие факто­ры закреплены на неизменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии. Это позволяет на основе частных уравнений регрессии определять частные коэффициенты эластичности:

где bi — коэффициент регрессии для фактора xi ; в уравнении множествен­ной регрессии,

ух1 хm — частное уравнение регрессии.

Наряду с частными коэффициентами эластичности могут быть най­дены средние по совокупности показатели эластичности. которые показывают, на сколько процентов в среднем изменится результат при изменении соответствующего фактора на 1%. Средние показатели эластичности можно сравнивать друг с другом и соответственно ранжировать факторы по силе из воздействия на результат.

2. Обобщенная линейная модель множественной регрессии

Коренное отличие обобщенной модели от классической состоит только в виде ковариационной квадратной матрицы вектора возмущений: вместо матрицы Σε = σ 2 En для классической модели имеем матрицу Σε = Ω для обобщенной. Последняя имеет произвольные значения ковариаций и дисперсий. Например, ковариационные матрицы классической и обобщенной моделей для двух наблюдений (п=2) в общем случае будут иметь вид:

Формально обобщенная линейная модель множественной регрессии (ОЛММР) в матричной форме имеет вид:

и описывается системой условий:

1. ε – случайный вектор возмущений с размерностью n; X -неслучайная матрица значений объясняющих переменных (матрица плана) с размерностью nх(р+1); напомним, что 1-й столбец этой матрицы состоит из пединиц;

2. M(ε) = 0n – математическое ожидание вектора возмущений равно ноль-вектору;

3. Σε = M(εε’) = Ω, где Ω – положительно определенная квадратная матрица; заметим, что произведение векторов ε‘ε дает скаляр, а произведение векторов εε’ дает матрицу размерностью nxn;

4. Ранг матрицы X равен р+1, который меньше n; напомним, что р+1 — число объясняющих переменных в модели (вместе с фиктивной переменной), n — число наблюдений за результирующей и объясняющими переменными.

Следствие 1. Оценка параметров модели (1) обычным МНК

является несмещенной и состоятельной, но неэффективной (неоптимальной в смысле теоремы Гаусса-Маркова). Для получения эффективной оценки нужно использовать обобщенный метод наименьших квадратов.

Следствие 2. Для классической модели ковариационная матрица вектора оценок параметров определялась формулой:

Эта оценка для обобщенной модели является смещенной (следовательно, и неэффективной).

Следствие 3. Для обобщенной модели ковариационная матрица вектора оценок параметров определяется другой формулой:

Список использованной литературы

1. Эконометрика: Учебник для вузов / Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2001.

2. Эконометрика: Учебное пособие / Автор Ю.Я. Настин, 2004.

Министерство образования и науки Украины

Донецкий Национальный университет

Кафедра теории вероятности

и математической статистики

Курсовая работа на тему

«Анализ модели множественной линейной регрессии»

1. Описание модели и предварительный анализ……………………….5

2.1 Гетероскедастичность и ее последствия……………………..6

2.2 Обнаружение гетероскедастичности…………………………7

3.1 Автокорреляция и ее последствия…………………………. 12

3.2 Обнаружение автокорреляции первого порядка:

4.1. Мультиколлинеарность и ее последствия…………………..16

4.2 Обнаружение мультиколлинеарности……………………….17

5. Спецификация модели………………………………………………. 18

6. Анализ особенностей модели…………………………………………23

7. Список использованной литературы…………………………………24

8. Приложение 1. Исходные данные…………………………………….25

9. Приложение 2. Стандартизированные данные………………………26

10. Приложение 3. Пример применения метода

Множественная линейная регрессия является обобщением парной линейной регрессии на случай, когда зависимая переменная гипотетически связана более чем с одной независимой переменной. Вследствие этого многие элементы анализа множественной линейной регрессии совпадают с элементами анализа парной регрессии (как то оценка дисперсии коэффициентов регрессии, проверка гипотезы об их значимости, вычисление коэффициента детерминации и т.д.) Для множественной линейной регрессии, построенной методом наименьших квадратов, также имеет место теорема Гаусса-Маркова :

Предположим, что , где Х – детерминированная матрица , имеющая максимальный ранг и

тогда оценка метода наименьших квадратов является несмещенной, эффективной и состоятельной.

Метод наименьших квадратов применяется в предположении, что кроме условий 1-4 теоремы Гаусса-Маркова выполняются также следующие требования:

5. Модель является линейной относительно параметров;

6.Между объясняющими переменными нет строгой или сильной зависимости;

7. Ошибка имеет гауссовское распределение с параметрами 0 и .

Нарушение хотя бы одного из предположений МНК приводит к ухудшению качества модели. В этом случае оценку нельзя считать несмещенной, эффективной и состоятельной. Нарушение второго условия приводит к гетероскедастичности, третьего – к автокорреляции, шестого – к мультиколлинеарности. Обнаружение этих явлений является необходимым элементом анализа множественной линейной регрессии. В данной работе приведено теоретическое описание методов обнаружения автокорреляции, гетероскедастичности и мультиколлинеарности, а также применение этих методов на конкретном примере.

Не менее важной задачей эконометриста есть правильная спецификация модели (ибо добавление переменной, которая не должна присутствовать в модели, равно как и отсутствие переменной, которая должна содержаться в ней, существенно ухудшает качество модели) и анализ ее особенностей. Этот аспект также будет рассмотрен в данной работе.

1. Описание модели и предварительный анализ

В нашем исследовании этапы анализа множественной парной регрессии будут рассматриваться на примере конкретной модели вида

Данные, на основе которых строится эта модель приведены в Приложении 1. Оценки коэффициентов регрессии, полученные методом наименьших квадратов приведены в Таблице 1.1.

Однако вследствие того, что исходные данные выражены в различных единицах измерения, имеет смысл перейти к так называемой стандартизированной форме, т.е. центрировать и нормировать исходные данные (см. Приложение 2). Таким образом мы приводим их к сопоставимому виду. Модель в этом случае будет иметь вид

Коэффициенты для этой новой модели соответственно равны

А уравнение множественной линейной регрессии записывается следующим образом

Коэффициент детерминации для данной модели равен 0,689985. Проведена проверка на адекватность с помощью критерия Фишера. Модель признана адекватной. В результате проверки на статистическую значимость выяснилось, что значимым является только коэффициент b3stand.

Таким образом, часть стандартной процедуры анализа общая для парной и множественной линейной регрессии завершена, и можно перейти к элементам анализа, более характерным для множественной регрессии.

2.1 Гетероскедастичность и ее последствия

Во втором условии Гаусса—Маркова утверждается, что дисперсия случайного члена в каждом наблюдении должна быть постоянной. Такое утверждение может показаться странным, и здесь требуется пояснение. Случайный член в каждом наблюдении имеет только одно значение, и может возникнуть вопрос о том, что означает его «дисперсия».

Имеется в виду его возможное поведение до того, как сделана выборка. Когда мы записываем модель (1.1), первые два условия Гаусса—Маркова указывают, что случайные члены , , . в n наблюдениях появляются на основе вероятностных распределений, имеющих нулевое математическое ожидание и одну и ту же дисперсию. Их фактические значения в выборке иногда будут положительными, иногда — отрицательными, иногда — относительно далекими от нуля, иногда.— относительно близкими к нулю, но у нас нет причин ожидать появления особенно больших отклонений в любом данном наблюдении. Другими словами, вероятность того, что величина примет какое-то данное положительное (или отрицательное) значение, будет одинаковой для всех наблюдений. Это условие известно как гомоскедастичность, что означает «одинаковый разброс».

Вместе с тем для некоторых выборок, возможно, более целесообразно предположить, что теоретическое распределение случайного члена является разным для различных наблюдений в выборке. Математически гомоскедастичность и гетероскедастичность могут определяться следующим образом:
Гомоскедастичность: Var () = постоянна для всех наблюдений;
Гетероскедастичность: Var () = , она не обязательно одинакова для всех i.

Для чего вводится требование об отсутствии гетероскедастичности? Во-первых, желательно, чтобы дисперсия МНК оценок была наименьшей, т.е. чтобы они обеспечивали максимальную точность. При отсутствии гетероскедастичности обычные коэффициенты регрессии имеют наиболее низкую дисперсию среди всех несмещенных оценок, являющихся линейными функциями от наблюдений у. Если имеет место гетероскедастичность, то оценки МНК, которые мы до сих пор использовали, неэффективны. Можно, по меньшей мере в принципе, найти другие оценки, которые имеют меньшую дисперсию и, не менее, являются несмещенными.
Вторая, не менее важная причина заключается в том, что сделанные оценки стандартных ошибок коэффициентов регрессии будут неверны. Они вычисляется на основе предположения о том, что распределение случайного члена гомоскедастично; если это не так, то они неверны. Вполне вероятно, что стандартные ошибки будут занижены, а следовательно, t-статистика — завышена, будет получено неправильное представление о точности оценки уравнения регрессии. Возможно, будет принята гипотеза, что коэффициент значимо отличается от нуля данном уровне значимости, тогда как в действительности это не так.

2.2 Обнаружение гетероскедастичности

Очень часто появление проблемы гетероскедастичности можно предвидеть заранее, основываясь на знании характера данных. В таких случаях можно предпринять соответствующие действия по устранению этого эффекта на этапе спецификации модели регрессии, и это позволит уменьшить или, возможно, устранить необходимость формальной проверки. К настоящему времени для такой проверки предложено большое число тестов (и, соответственно, критериев для них). Мы рассмотрим три обычно используемых теста (критерия), в которых делаются различные предположения о зависимости между дисперсией случайного члена и величиной объясняющих переменных: тест ранговой корреляции Спирмена, тест Голдфелда—Квандта и тест Глейзера.

Тест ранговой корреляции Спирмена

При выполнении теста ранговой корреляции Спирмена предполагается, что дисперсия случайного члена будет либо увеличиваться, либо уменьшаться по мере увеличения, и поэтому в регрессии, оцениваемой с помощью МНК; абсолютные величины остатков и значения объясняющих переменных будут коррелированы. Данные по и остатки упорядочиваются, и коэффициент ранговой корреляции определяется как

где — разность между рангом и рангом е.
Если предположить, что коэффициент корреляции для генеральной совокупности равен нулю, то коэффициент ранговой корреляции имеет нормальное распределение с математическим ожиданием 0 и дисперсией в больших выборках. Следовательно, соответствующая тестовая статистика равна , и при использовании двустороннего критерия нулевая гипотеза об отсутствии гетероскедастичности будет отклонена при уровне значимости в 5%, если она превысит 1,96, и при уровне значимости в 1%, если она превысит 2,58.

Применим тест ранговой корреляции Спирмена к нашей модели. Для простоты изложения подробные расчеты приведены лишь для .


Статьи по теме