Реферат на Тему Лазер

Реферат на Тему Лазер.rar
Закачек 1785
Средняя скорость 7354 Kb/s

Реферат по дисциплине:

ученица 11е класса

На вопрос о том, что такое лазер, академик Н. Г. Басов отвечал так: «Лазер — это устройство, в котором энергия, например тепловая, химическая, электрическая, преобразуется в энергию электромагнитного поля — лазерный луч. При таком преобразовании часть энергии неизбежно теряется, но важно то, что полученная в результате лазерная энергия обладает более высоким качеством. Качество лазерной энергии определяется ее высокой концентрацией и возможностью передачи на значительное расстояние. Лазерный луч можно сфокусировать в крохотное пятнышко диаметром порядка длины световой волны и получить плотность энергии, превышающую уже на сегодняшний день плотность энергии ядерного взрыва. С помощью лазерного излучения уже удалось достичь самых высоких значений температуры, давления, индукции магнитного поля. Наконец, лазерный луч является самым емким носителем информации и в этой роли — принципиально новым средством ее передачи и обработки».

В 50-х годах были созданы устройства, при прохождении через которые электромагнитные волны усиливаются за счёт открытого Эйнштейном вынужденного излучения. В 1953 году Басовым[1] и Прохоровым[2] и независимо от них Таунсом[3] были созданы первые молекулярные генера­торы, работающие в диапазоне сантиметровых волн и получившие название мазеров. В 1964 г. Басову, Прохорову и Таунсу была за эти работы присуждена Нобелевская премия. Слово «мазер» происходит от первых букв английского названия Microwave Amplification by Stimulated Emission of Radiation (усиление микроволн с помощью вынужденного излучения).

В 1960 г. Мейманом[4] был создан первый аналогичный прибор, работающий в оптическом диапазоне, — лазер (Light Amplification by Stimulated Emission of Radiation — усиление света с помощью вынужден­ного излучения). Лазеры называют также оптиче­скими квантовыми генераторами.

Воз­действующий на вещество свет частоты w, совпадаю­щей с одной из частот n — Ет )/h атомов вещества (Еn>Ет), может вызывать два процесса: I) выну­жденный переход т ® n и 2) вынужденный переход n ® т. Первый процесс приводит к поглощению света и ослаблению падающего пучка, второй — к увеличе­нию интенсивности падающего пучка. Результирую­щее изменение интенсивности светового пучка зависит от того, какой из двух процессов преобладает.

В случае термодинамического равновесия распре­деление атомов по различным энергетическим состоя­ниям определяется законом Больцмана

(1.1)

где N — полное число, атомов, N i число атомов, на­ходящихся при температуре Т в состоянии с энергией Ei (для простоты предположили, что все энергети­ческие уровни не являются вырожденными). Из этой формулы следует, что с увеличением энергии состояния населенность уровня, т. е. количество атомов в дан­ном состоянии, уменьшается. Число переходов между двумя уровнями пропорционально населенности исход­ного уровня. Следовательно, в системе атомов, нахо­дящейся в термодинамическом равновесии, поглоще­ние падающей световой волны будет преобладать над вынужденным излучением, так что падающая волна при прохождении через вещество ослабляется.

Для того чтобы получить усиление падающей вол­ны, нужно обратить населенность энергетических уров­ней, т. е. сделать так, чтобы в состоянии с большей энергией находилось большее число атомов, чем в со­стоянии с меньшей энергией. В этом случае говорят, что данная совокупность атомов имеет инверсную населенность.

Изменение интенсивности света при прохождении через поглощающую среду описывается формулой

(1.2)

В веществе с инверсной населенностью энергетических уровней вынужденное излучение может превысить по­глощение света атомами, вследствие чего падающий пучок света при прохождении через вещество будет усиливаться. В случае усиления падающего пучка яв­ление протекает так, как если бы коэффициент погло­щения a в формуле (1.2) стал отрицательным. Соот­ветственно совокупность атомов с инверсной населен­ностью можно рассматривать как среду с отрицатель­ным коэффициентом поглощения.

Удивительный источник света

Попробуем понять, как работает этот удивитель­ный источник света. Остановимся вначале на про­цессах излучения и поглощения света атомами ве­щества. Атомы поглощают световую энергию только определенными порциями — квантами. Когда атом поглощает световой квант — фотон, его внутренняя энергия увеличивается. Принято говорить, что при этом атом переходит на более высокий энергети­ческий уровень. Этот новый уровень лежит выше «старого» на величину энергии поглощенного кван­та. Обычно атом стремится перейти в состояние с наименьшей возможной для него энергией. Такое состояние называют основным.

Допустим, что атом получил избыток энергии. Атом, у которого запас энергии больше, чем в ос­новном состоянии, называют возбужденным. Обыч­но он очень быстро — за одну десятимиллионную долю секунды — избавляется от лишней энергии и переходит в основное состояние. При этом атом ис­пускает фотон, энергия которого hv (рис.1). В большинстве случаев излишнюю энергию атом отдает без всякого воздействия. Такое излучение называют самопроизвольным или спонтанным. Од­нако процесс перехода атома с высокого энергети­ческого уровня на более низкий может происходить и под действием другого кванта. Пролетая мимо возбужденного атома, фо­тон может увлечь за собой фотон такой же энергии, как и его собственная, если энергия возбуждения атома равна энергии пролетающего фотона. Замеча­тельно, что электромагнитные колебания похищен­ного фотона будут в той же фазе, что и у фотона-«похитителя». Таким образом, проходящий световой поток стремится перевести атомы на более низкие уровни.

Еще до изобретения лазера физики наблюдали замечательное явление — так называемое отрица­тельное поглощение света. Пучок света, проходя че­рез любое вещество, ослаблялся: часть фотонов пучка отражается поверхностью, а некоторое коли­чество фотонов поглощается веществом и переходит в тепло. Но вот удалось осуществить, казалось бы, невозможное. Проходя через некоторые кристаллы, световой луч не ослаблялся, а усиливался! Откуда появилась дополнительная энергия? Оказывается, до того момента, когда через кристалл прошел луч, кристалл был подсвечен мощным источником света. Благодаря этому большая часть атомов кристалла перешла в возбужденное состояние. Из возбужден­ного состояния эти атомы могут перейти на более низкий энергетический уровень, испустив при этом фотон с энергией hv . Поглотить же фотон с такой энергией они не могут — они уже насытились энер­гией. Зато фотоны падающего пучка с энергией /iv увлекают за собой новые фотоны той же энер­гии, вынуждая атомы кристалла переходить в низ­шее состояние. В падающем пучке появляется до­полнительная энергия. Такой кристалл с дополни­тельной подсветкой — первый шаг к лазеру.

Первые лазеры и их устройство

Создание лазера стало возможным после того, как были найдены способы осуществления инверсной на­селенности уровней в некоторых веществах. В по­строенном Мейманом первом лазере рабочим телом был цилиндр из розового рубина. Диаметр стержня был порядка 1 см, длина — около 5 см. Торцы руби­нового стержня были тщательно отполированы и пред­ставляли собой строго параллельные друг другу зер­кала. Один торец покрывался плотным непрозрачным слоем серебра, другой торец покрывался таким слоем серебра, который пропускал около 8 % упавшей на него энергии.

Рубин представляет собой окись алюминия (Al2 O3 ), в которой некоторые из атомов алюминия замещены атомами хрома. При поглощении света ионы хрома Cr 3+ (в таком виде хром находится в кристалле ру­бина) переходят в возбужденное состояние. Обратный переход в основное состояние происходит в два этапа. На первом этапе возбужденные ионы отдают часть своей энергии кристаллической решетке и переходят в метастабильное состояние. Переход из метастабильного состояния в основное запрещен правилами от­бора. Поэтому среднее время жизни иона в метастабильном состоянии (

10 -3 с) примерно в 10 5 раз пре­восходит время жизни в обычном возбужденном со­стоянии. На втором этапе ионы из метастабильного состояния переходят в основное[5] , излучая фотон с l=694,3 нм. Под действием фотонов такой же длины волны, т. е. при вынужденном излучении, переход ионом хрома из метастабильного состояния в основное происходит значительно быстрее, чем при спонтанном излучении.

Рис. 2. Схема лазера на рубине

В лазере рубин освещается импульсной ксеноновой лампой (рис.2), которая дает свет с широкой поло­сой частот. При достаточной мощности лампы боль­шинство ионов хрома переводится в возбужденное со­стояние. Процесс сообщения рабочему телу лазера энергии для перевода атомов в возбужденное состоя­ние называется накачкой. На рис. 3 дана схема уровней иона хрома Cr 3+ (уровень 3 представляет со­бой полосу, образованную совокупностью близко рас­положенных уровней).

Возбуждение ионов за счет накачки изображено стрелкой W13 . Время жизни уровня 3 очень мало (

10 -8 с). В течение этого времени некоторые ионы перейдут спонтанно из полосы 3 на основной уровень 1. Такие переходы показаны стрелкой A31 . Однако, большинство ионов перейдет на метастабильный уро­вень 2 (вероятность перехода, изображенного стрел­кой S32 , значительно больше, чем перехода A31 ). При достаточной мощности накачки число ионов хрома, находящихся на уровне 2, становится больше числа ионов на уровне 1. Следовательно, возникает инверсия населенностей уровней 1 и 2.

Стрелка А21 изображает спонтанный переход с метастабильного уровня на основной. Излученный при этом фотон может вызвать вынужденное испускание дополнительных фотонов (переход W21 ), которые в свою очередь вызовут вынужденное излучение, и т. д. В результате образуется каскад фотонов. Напомним, что фотоны, возникающие при вынужденном излуче­нии, летят в том же направлении, что и падающие фо­тоны. Фотоны, направления движения которых образуют малые углы с осью кристаллического стержня, испытывают многократные отражения от торцов об­разца. Поэтому путь их в кристалле будет очень боль­шим, так что каскады фотонов в направлении оси по­лучают особенное развитие. Фотоны, испущенные спонтанно в других направлениях, выходят из кристалла через его боковую поверхность.

Процесс образования каскада изображен схематически на рис.4. До вспышки лампы ионы хрома находятся в основном состоянии (черные кружки на рис.4а). Свет накачки (сплошные стрелки на рис.4б) переводит большинство ионов в возбужден­ное состояние (светлые кружки). Каскад начинает развиваться, когда возбужденные ионы спонтанно из­лучают фотоны (штриховые стрелки на рис.4в) в направлении, параллельном оси кристалла (фотоны, испущенные по другим направлениям, выходят из кри­сталла). Фотоны размножаются за счет вынужденного излучения. Этот процесс развивается (рис.4г и д), так как фотоны многократно проходят вдоль кристал­ла, отражаясь от его торцов.

Рис. 4. Процесс образования каскада фотонов

При каждом отражении от частично прозрачного торца небольшая доля (8 %) светового пучка выходит из кристалла. Поэтому после каждого акта накачки возникает вспышка лазерного излучения, состоящая из ряда импульсов, общая про­должительность которых равна нескольким микросе­кундам. Лазеры на рубине работают в импульсном ре­жиме с частотой порядка нескольких вспышек в ми­нуту.

В 1961 г. Джаваном[6] был создан первый газовый лазер, работающий на смеси гелия и неона. В 1963 г. были созданы первые полупроводниковые лазеры. В настоящее время список лазерных материалов на­считывает много десятков твердых, жидких и газооб­разных веществ. Одни лазеры работают в импульсном, другие—в непрерывном режиме.

Если цилиндрический сосуд наполнить смесью гелия и у неона, внутрь его поместить металлические электро­ды и подать на них высокое напряжение, то смесь газов начнет светиться красноватым светом, почти таким же, как и неоновая реклама (рис. 5).

В стеклянной трубке возникает тлеющий разряд. При этом между атомами газа движется много бы­стрых электронов. Они сталкиваются с атомами ге­лия и возбуждают их. Электроны сталкиваются с неоном, но, как правило, возбуждают только низ­колежащие уровни неона. Возбужденные атомы ге­лия, сталкиваясь с атомами неона, отдают им свою энергию и возбуждают их высокие уровни. С этих высоких уровней атом неона переходит в промежу­точное состояние Е1 . Если теперь у торцов сосуда с гелий-неоновой смесью установить такие же зерка­ла, как и у торцов рубинового лазера, то фотон с энергией Е1 — Е2 , испущенный параллельно оси со­суда, вызовет лазерное излучение. В газовом лазере число возбужденных атомов неона и гелия непре­рывно пополняется. Поэтому гелий-неоновый лазер излучает свет непрерывно.

Очень интересен лазер с жидким излучающим телом. Мы уже знаем, что главную роль в излу­чающем теле рубинового лазера играют атомы хрома.

Рис. 5. Гелий-неоновый лазер:

а — схема лазера на смеси гелия и неона;

б — схема энергетических уровней гелия и неона.

студентка группы 421121

1. ПРИНЦИП ДЕЙСТВИЯ И ВИДЫ ЛАЗЕРОВ

1.1 ОСНОВНЫЕ СВОЙСТВА ЛАЗЕРНОГО ЛУЧА

1.2 МОЩНЫЕ ЛАЗЕРЫ

2. ПРИМЕНЕНИЕ ЛАЗЕРОВ

2.1 ПРИМЕНЕНИЕ ЛАЗЕРНОГО ЛУЧА В ПРОМЫШЛЕННОСТИ И ТЕХНИКЕ

2.2 ПРИМЕНЕНИЕ ЛАЗЕРОВ В МЕДИЦИНЕ

2.3.1 ВОЗНИКНОВЕНИЕ ГОЛОГРАФИИ

2.3.2 СПОСОБЫ ГОЛОГРАФИРОВАНИЯ

2.3.3 ПРИМЕНЕНИЕ ГОЛОГРАФИИ

2.4 ЛАЗЕРНЫЕ ТЕХНОЛОГИИ – СРЕДСТВО ЗАПИСИ И ОБРАБОТКИ ИНФОРМАЦИИ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Принцип действия лазеров

В основу лазеров положено явление индуцированного излучения, существование которого было предсказано Эйнштейном в 1917 году. По Эйнштейну, наряду с процессами обычного излучения и резонансного поглощения существует третий процесс — вынужденное (индуцированное) излучение. Свет резонансной частоты, то есть той частоты, которую атомы способны поглощать, переходя на высшие энергетические уровни, должен вызывать свечение атомов, уже находящихся на этих уровнях, если таковые имеются в среде. Характерная особенность этого излучения заключается в том, что испускаемый свет неотличим от вынуждающего света, то есть совпадает с последним по частоте, по фазе, поляризации и направлению распространения. Это означает, что вынужденное излучение добавляет в световой пучок точно такие же кванты света, какие уводит из него резонансное поглощение.

Атомы среды могут поглощать свет, находясь на нижнем энергетическом уровне, излучают же они на верхних уровнях. Отсюда следует, что при большом количестве атомов на нижних уровнях (по крайней мере, большем, чем количество атомов на верхних уровнях), свет, проходя через среду, будет ослабляться. Напротив, если число атомов на верхних уровнях больше числа невозбужденных, то свет, пройдя через данную среду, усилится. Это значит, что в данной среде преобладает индуцированное излучение. Пространство между зеркалами заполнено активной средой, то есть средой, содержащей большее количество возбужденных атомов (атомов, находящихся на верхних энергетических уровнях), чем невозбужденных. Среда усиливает проходящий через неё свет за счет индуцированного излучения, начало которому даёт спонтанное излучение одного из атомов.

Лазерное излучение — есть свечение объектов при нормальных температурах. Но в обычных условиях большинство атомов находятся на низшем энергетическом состоянии. Поэтому при низких температурах вещества не светятся. При прохождении электромагнитной волны сквозь вещество её энергия поглощается. За счёт поглощенной энергии волны часть атомов возбуждается, то есть переходит в высшее энергетическое состояние. При этом от светового пучка отнимается некоторая энергия:

где hν — величина, соответствующая количеству потраченной энергии,

E2 — энергия высшего энергетического уровня,

E1 — энергия низшего энергетического уровня.

Возбужденный атом может отдать свою энергию соседним атомам при столкновении или испустить фотон в любом направлении. Теперь представим, что каким-либо способом мы возбудили большую часть атомов среды. Тогда при прохождении через вещество электромагнитной волны с частотой

,

где v — частота волны,

Е2 — Е1 — разница энергий высшего и низшего уровней,

эта волна будет не ослабляться, а напротив, усиливаться за счёт индуцированного излучения. Под её воздействием атомы согласованно переходят в низшие энергетические состояния, излучая волны, совпадающие по частоте и фазе с падающей волной.

Реферат по дисциплине:

ученица 11е класса

Возникновение лазеров. 4

Закон Больцмана. 4

Первые лазеры и их устройство. 6

Световой телеграф. 12

Список использованной литературы.. 15

На вопрос о том, что такое лазер, академик отвечал так: «Лазер — это устройство, в котором энергия, например тепловая, химическая, электрическая, преобразуется в энергию электромагнитного поля — лазерный луч. При таком преобразовании часть энергии неизбежно теряется, но важно то, что полученная в результате лазерная энергия обладает более высоким качеством. Качество лазерной энергии определяется ее высокой концентрацией и возможностью передачи на значительное расстояние. Лазерный луч можно сфокусировать в крохотное пятнышко диаметром порядка длины световой волны и получить плотность энергии, превышающую уже на сегодняшний день плотность энергии ядерного взрыва. С помощью лазерного излучения уже удалось достичь самых высоких значений температуры, давления, индукции магнитного поля. Наконец, лазерный луч является самым емким носителем информации и в этой роли — принципиально новым средством ее передачи и обработки».

В 50-х годах были созданы устройства, при прохождении через которые электромагнитные волны усиливаются за счёт открытого Эйнштейном вынужденного излучения. В 1953 году Басовым[1] и Прохоровым[2] и независимо от них Таунсом[3] были созданы первые молекулярные генера­торы, работающие в диапазоне сантиметровых волн и получившие название мазеров. В 1964 г. Басову, Прохорову и Таунсу была за эти работы присуждена Нобелевская премия. Слово «мазер» происходит от первых букв английского названия Microwave Amplification by Stimulated Emission of Radiation (усиление микроволн с помощью вынужденного излучения).

В 1960 г. Мейманом[4] был создан первый аналогичный прибор, работающий в оптическом диапазоне, — лазер (Light Amplification by Stimulated Emission of Radiation — усиление света с помощью вынужден­ного излучения). Лазеры называют также оптиче­скими квантовыми генераторами.

Воз­действующий на вещество свет частоты w, совпадаю­щей с одной из частот n — Ет )/h атомов вещества (Еn>Ет), может вызывать два процесса: I) выну­жденный переход т® n и 2) вынужденный переход n® т. Первый процесс приводит к поглощению света и ослаблению падающего пучка, второй — к увеличе­нию интенсивности падающего пучка. Результирую­щее изменение интенсивности светового пучка зависит от того, какой из двух процессов преобладает.

В случае термодинамического равновесия распре­деление атомов по различным энергетическим состоя­ниям определяется законом Больцмана

(1.1)

где N — полное число, атомов, Ni число атомов, на­ходящихся при температуре Т в состоянии с энергией Ei (для простоты предположили, что все энергети­ческие уровни не являются вырожденными). Из этой формулы следует, что с увеличением энергии состояния населенность уровня, т. е. количество атомов в дан­ном состоянии, уменьшается. Число переходов между двумя уровнями пропорционально населенности исход­ного уровня. Следовательно, в системе атомов, нахо­дящейся в термодинамическом равновесии, поглоще­ние падающей световой волны будет преобладать над вынужденным излучением, так что падающая волна при прохождении через вещество ослабляется.

Для того чтобы получить усиление падающей вол­ны, нужно обратить населенность энергетических уров­ней, т. е. сделать так, чтобы в состоянии с большей энергией находилось большее число атомов, чем в со­стоянии с меньшей энергией. В этом случае говорят, что данная совокупность атомов имеет инверсную населенность.

Изменение интенсивности света при прохождении через поглощающую среду описывается формулой

(1.2)

В веществе с инверсной населенностью энергетических уровней вынужденное излучение может превысить по­глощение света атомами, вследствие чего падающий пучок света при прохождении через вещество будет усиливаться. В случае усиления падающего пучка яв­ление протекает так, как если бы коэффициент погло­щения a в формуле (1.2) стал отрицательным. Соот­ветственно совокупность атомов с инверсной населен­ностью можно рассматривать как среду с отрицатель­ным коэффициентом поглощения.

Попробуем понять, как работает этот удивитель­ный источник света. Остановимся вначале на про­цессах излучения и поглощения света атомами ве­щества. Атомы поглощают световую энергию только определенными порциями — квантами. Когда атом поглощает световой квант — фотон, его внутренняя энергия увеличивается. Принято говорить, что при этом атом переходит на более высокий энергети­ческий уровень. Этот новый уровень лежит выше «старого» на величину энергии поглощенного кван­та. Обычно атом стремится перейти в состояние с наименьшей возможной для него энергией. Такое состояние называют основным.

Допустим, что атом получил избыток энергии. Атом, у которого запас энергии больше, чем в ос­новном состоянии, называют возбужденным. Обыч­но он очень быстро — за одну десятимиллионную долю секунды — избавляется от лишней энергии и переходит в основное состояние. При этом атом ис­пускает фотон, энергия которого hv (рис.1). В большинстве случаев излишнюю энергию атом отдает без всякого воздействия. Такое излучение называют самопроизвольным или спонтанным. Од­нако процесс перехода атома с высокого энергети­ческого уровня на более низкий может происходить и под действием другого кванта. Пролетая мимо возбужденного атома, фо­тон может увлечь за собой фотон такой же энергии, как и его собственная, если энергия возбуждения атома равна энергии пролетающего фотона. Замеча­тельно, что электромагнитные колебания похищен­ного фотона будут в той же фазе, что и у фотона-«похитителя». Таким образом, проходящий световой поток стремится перевести атомы на более низкие уровни.

Еще до изобретения лазера физики наблюдали замечательное явление — так называемое отрица­тельное поглощение света. Пучок света, проходя че­рез любое вещество, ослаблялся: часть фотонов пучка отражается поверхностью, а некоторое коли­чество фотонов поглощается веществом и переходит в тепло. Но вот удалось осуществить, казалось бы, невозможное. Проходя через некоторые кристаллы, световой луч не ослаблялся, а усиливался! Откуда появилась дополнительная энергия? Оказывается, до того момента, когда через кристалл прошел луч, кристалл был подсвечен мощным источником света. Благодаря этому большая часть атомов кристалла перешла в возбужденное состояние. Из возбужден­ного состояния эти атомы могут перейти на более низкий энергетический уровень, испустив при этом фотон с энергией hv. Поглотить же фотон с такой энергией они не могут — они уже насытились энер­гией. Зато фотоны падающего пучка с энергией /iv увлекают за собой новые фотоны той же энер­гии, вынуждая атомы кристалла переходить в низ­шее состояние. В падающем пучке появляется до­полнительная энергия. Такой кристалл с дополни­тельной подсветкой — первый шаг к лазеру.

Создание лазера стало возможным после того, как были найдены способы осуществления инверсной на­селенности уровней в некоторых веществах. В по­строенном Мейманом первом лазере рабочим телом был цилиндр из розового рубина. Диаметр стержня был порядка 1 см, длина — около 5 см. Торцы руби­нового стержня были тщательно отполированы и пред­ставляли собой строго параллельные друг другу зер­кала. Один торец покрывался плотным непрозрачным слоем серебра, другой торец покрывался таким слоем серебра, который пропускал около 8 % упавшей на него энергии.

Рубин представляет собой окись алюминия (Al2O3), в которой некоторые из атомов алюминия замещены атомами хрома. При поглощении света ионы хрома Cr3+ (в таком виде хром находится в кристалле ру­бина) переходят в возбужденное состояние. Обратный переход в основное состояние происходит в два этапа. На первом этапе возбужденные ионы отдают часть своей энергии кристаллической решетке и переходят в метастабильное состояние. Переход из метастабильного состояния в основное запрещен правилами от­бора. Поэтому среднее время жизни иона в метастабильном состоянии (

10-3 с) примерно в 105 раз пре­восходит время жизни в обычном возбужденном со­стоянии. На втором этапе ионы из метастабильного состояния переходят в основное[5], излучая фотон с l=694,3 нм. Под действием фотонов такой же длины волны, т. е. при вынужденном излучении, переход ионом хрома из метастабильного состояния в основное происходит значительно быстрее, чем при спонтанном излучении.

Рис. 2. Схема лазера на рубине

В лазере рубин освещается импульсной ксеноновой лампой (рис.2), которая дает свет с широкой поло­сой частот. При достаточной мощности лампы боль­шинство ионов хрома переводится в возбужденное со­стояние. Процесс сообщения рабочему телу лазера энергии для перевода атомов в возбужденное состоя­ние называется накачкой. На рис. 3 дана схема уровней иона хрома Cr3+ (уровень 3 представляет со­бой полосу, образованную совокупностью близко рас­положенных уровней).

Возбуждение ионов за счет накачки изображено стрелкой W13. Время жизни уровня 3 очень мало (

10-8 с). В течение этого времени некоторые ионы перейдут спонтанно из полосы 3 на основной уровень 1. Такие переходы показаны стрелкой A31 . Однако, большинство ионов перейдет на метастабильный уро­вень 2 (вероятность перехода, изображенного стрел­кой S32, значительно больше, чем перехода A31). При достаточной мощности накачки число ионов хрома, находящихся на уровне 2, становится больше числа ионов на уровне 1. Следовательно, возникает инверсия населенностей уровней 1 и 2.

Стрелка А21 изображает спонтанный переход с метастабильного уровня на основной. Излученный при этом фотон может вызвать вынужденное испускание дополнительных фотонов (переход W21), которые в свою очередь вызовут вынужденное излучение, и т. д. В результате образуется каскад фотонов. Напомним, что фотоны, возникающие при вынужденном излуче­нии, летят в том же направлении, что и падающие фо­тоны. Фотоны, направления движения которых образуют малые углы с осью кристаллического стержня, испытывают многократные отражения от торцов об­разца. Поэтому путь их в кристалле будет очень боль­шим, так что каскады фотонов в направлении оси по­лучают особенное развитие. Фотоны, испущенные спонтанно в других направлениях, выходят из кристалла через его боковую поверхность.

Процесс образования каскада изображен схематически на рис.4. До вспышки лампы ионы хрома находятся в основном состоянии (черные кружки на рис.4а). Свет накачки (сплошные стрелки на рис.4б) переводит большинство ионов в возбужден­ное состояние (светлые кружки). Каскад начинает развиваться, когда возбужденные ионы спонтанно из­лучают фотоны (штриховые стрелки на рис.4в) в направлении, параллельном оси кристалла (фотоны, испущенные по другим направлениям, выходят из кри­сталла). Фотоны размножаются за счет вынужденного излучения. Этот процесс развивается (рис.4г и д), так как фотоны многократно проходят вдоль кристал­ла, отражаясь от его торцов.

Рис. 4. Процесс образования каскада фотонов

При каждом отражении от частично прозрачного торца небольшая доля (8 %) светового пучка выходит из кристалла. Поэтому после каждого акта накачки возникает вспышка лазерного излучения, состоящая из ряда импульсов, общая про­должительность которых равна нескольким микросе­кундам. Лазеры на рубине работают в импульсном ре­жиме с частотой порядка нескольких вспышек в ми­нуту.

В 1961 г. Джаваном[6] был создан первый газовый лазер, работающий на смеси гелия и неона. В 1963 г. были созданы первые полупроводниковые лазеры. В настоящее время список лазерных материалов на­считывает много десятков твердых, жидких и газооб­разных веществ. Одни лазеры работают в импульсном, другие—в непрерывном режиме.

Если цилиндрический сосуд наполнить смесью гелия и у неона, внутрь его поместить металлические электро­ды и подать на них высокое напряжение, то смесь газов начнет светиться красноватым светом, почти таким же, как и неоновая реклама (рис. 5).

В стеклянной трубке возникает тлеющий разряд. При этом между атомами газа движется много бы­стрых электронов. Они сталкиваются с атомами ге­лия и возбуждают их. Электроны сталкиваются с неоном, но, как правило, возбуждают только низ­колежащие уровни неона. Возбужденные атомы ге­лия, сталкиваясь с атомами неона, отдают им свою энергию и возбуждают их высокие уровни. С этих высоких уровней атом неона переходит в промежу­точное состояние Е1. Если теперь у торцов сосуда с гелий-неоновой смесью установить такие же зерка­ла, как и у торцов рубинового лазера, то фотон с энергией Е1 — Е2, испущенный параллельно оси со­суда, вызовет лазерное излучение. В газовом лазере число возбужденных атомов неона и гелия непре­рывно пополняется. Поэтому гелий-неоновый лазер излучает свет непрерывно.

Очень интересен лазер с жидким излучающим телом. Мы уже знаем, что главную роль в излу­чающем теле рубинового лазера играют атомы хрома.

Рис. 5. Гелий-неоновый лазер:

а — схема лазера на смеси гелия и неона;


Статьи по теме